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Exponential Decay of Connectivities in 
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We prove some results concerning the decay of connectivities in the low-tem- 
perature phase of the two-dimensional Ising model. These provide the bounds 
necessary to establish, nonperturbatively, large-deviation properties for block 
magnetizations in these systems. We also obtain estimates on the rate at which 
the finite-volume, plus-boundary-condition expectation of the spin at the origin 
converges to the spontaneous magnetization. 
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1. I N T R O D U C T I O N  

We consider the two-dimensional nearest neighbor ferromagnetic Ising 
model. Our main result is that, in the + state, the connectivity function for 
( - , )  percolation tends to zero exponentially rapidly at all temperatures 
below T~.. This strengthens the celebrated result of Russo, ~ who proved 
that below To, in the + state, the plus spins percolate and there is almost 
surely no ( - * )  infinite cluster. Related, but somewhat weaker results about 
connectivities have recently been established in Ref. 4. 

Our principal motivation comes from Ref. 10, where large-deviation 
properties of the average magnetizations of large blocks in t h e + p h a s e  
were investigated, It was demonstated in Ref. 10 that exponential decay of 
the ( - , )  connectivity is sufficient to establish that these large deviations of 
the block magnetizations behave as the surface area of the blocks. (The 
estimates in Ref. 4 and those implicit in Ref. 9 are insufficient for these 
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purposes.) For low enough temperatures, Peierls types of estimates can be 
used to show this exponential decay. Our result extends the above results 
of Ref. 10 to all temperatures below Tc. In addition, Ref. 10 derived large- 
deviation estimates for finite systems with free boundary conditions under 
the assumption of low enough temperatures; here, we extend these 
estimates to the full phase coexistence regime. 

Finally, as a bonus, we obtain essentially optimal estimates on the rate 
of convergence of the finite-volume, +-boundary-condition, single-site 
magnetization to the infinite-volume (spontaneous) magnetization. 

Before making any precise statements, let us introduce some notation. 
If F c  7/2, then IFI will denote its cardinality (number of sites), and 0F its 
(interior) boundary, i.e., the set of sites in F that have a neighbor in 7/2\/-. 
A chain in 7/2 is a sequence {xl,..., xn}, with no repeats, such that x~ and 
x~+ 1 are nearest neighbors for i = 1,..., n - 1. A circuit is a chain such that 
xl and x,  are also nearest neighbors. Two distinct sites are said to be (*) 
adjacent if they are nearest or next nearest neighbors. In the obvious way, 
one may then define ( .)  chains and ( .)  circuits. Given an Ising spin con- 
figuration a e { - 1, + 1 } Irl, a ( + ) chain is a chain in F such that ax = + 1 
for each x belonging to the chain. The ( + )  circuits, (+  , )  chains, etc., are 
defined analogously. Two sites, x and y, are said to be ( + )  connected if 
they belong to the same ( + ) chain. Similar definitions describe the notions 
of ( - ) connections, ( - , )  connections, etc. 

Given a F c  7/2, [FI < or, for fixed inverse temperature fl and boun- 
dary condition a =- {ax ]x E 7/2\F}, the Gibbs state in F is given by 

#r.a.~(o-)=~exp fl axay+ ~ axay 
( , )  ( x , y )  
x , y ~ F  x ~ F  

y C F  

(1) 

where (x, y )  means that x and y are nearest neighbors and each pair 
should be considered only once in the sum. The normalization constant ~e 
is called the partition function. The + boundary conditions are defined by 
fixing ax = 1 for all x ~ Z2\F, while free boundary conditions are obtained 
by fixing the ax = 0. These two boundary conditions will be indicated 
by + or 0, respectively, in place of the subscript a above. We will also use 
the notation (-)r,a,~ to indicate the expectation of functions with respect to 
the #r,a,~ measure. 

It is well known that as F increases to Z 2, Pr,+,r converges (in the dis- 
tributional sense) to the infinite-volume measure p+,~ called the +phase; 
#-,8 is the analogous -phase .  Let m(fl) be the expected value of ao in the 
+phase; m(fl) is called the spontaneous magnetization. We let 
tic = inf{fl ~> O lm(fl) > O} denote the critical temperature. 
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The ( - , )  connectivity function for the +phase is defined by 

/,(~, ,7)= u +,e(ro.*) (2) 

where To,* is the event that (0, 0) is ( - , )  connected to (0, n). The usual 
supermultiplicity arguments--which here involve the F K G  inequalities for 
/~+,~(.)--imply the existence of 

lim [ - n  -~ log/ff/~, n)] ---7,(/~)E [0, oo) (3) 
n ~ o o  

In Ref. 10 the following facts were established: Let / ' C Z  2 with 
I FI < oe, set 

1 
Mr(~)=]-~ Z ax (4) 

x E F  

and consider the sequence of squares (the choice here is somewhat different 
from that used in Ref. 10): An= { x e Z  2] - n  ~<Xl, x2~  < +n}. Then: 

S1. Assume fl > tic. Provided that the ( - , )  connectivity function for 
#+,t~ decays exponentially (i.e., 7~ > 0), then if - 1 ~< a < b with Ib] < m(fl), 
there are nontrivial constants A1, A:, C1, C2 such that 

Ale q" <~#+,~{MA ~ (a, b)} <<.A2e c2, (5) 

$2. Provided that /3 > log 3, then if a < b with laP, ]bF < m(fl), there 
are nontrivial constants A1, A2, C1, C2 such that 

A1 e-Cl. <~ #A,,O,~{MA" E (a, b) } <<. A2 e-C2" (6) 

Remark. Note that although the large-deviation estimates (5) and 
(6) are optimal in the sense that the exponential decay rate n is the surface 
area of the cube A,, they do not follow from optimal hypotheses. Indeed, 
the condition for S1 implies f l>flc  (by Ref. 9), but is not necessarily 
implied by it; the condition for $2, e ~< 1/3, is the well-known Peierls 
estimate on tic- According to physical intuition, the input hypotheses for S1 
and $2 ought, simply, to be the condition fi > tic; this is what we will show 
below. 

In particular, we will show that exponential decay of ( - * )  connec- 
tivity in the +phase  is equivalent to positive spontaneous magnetization: 

T h e o r e m  1. For any fi > fl~,/i(/3, n) decays exponentially in n, i.e., 
7~>0. 

Although Theorem 1 is of some intrinsic interest, its principal benefit 
is: 
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Corol lary  1. The behavior described in S1 holds for all/~>/~c. 

The problem of removing the explicit Peierls estimate o n / ~  for $2 is 
handled by techniques related to the proof of Theorem 1. The upshot is: 

T h e o r e m  2. The behavior described in $2 holds for all/3 >/~e. 

With only a little more work, we are able to obtain fairly accurate 
bounds on the rate of convergence of single-site magnetizations in finite- 
volume, +boundary  condition systems to m(/3): 

T h e o r e m  3. For/~ >/3e, there are nontrivial constants A~, Ab and 
7~, ~'b such that 

A, exp( -7~n)  <~ <~O)A,,+,~ --m(~) <~ Ab exp(--7bn) 

A central ingredient in our analysis will be the Fortuin and Kasteleyn 
(FK) random cluster representation, introduced in Ref. 3, which has been 
studied in Ref. 1. In the next section we review the relevant facts about this 
representation of the Ising spin system. In the final section we prove the 
above theorems. 

2. P R E L I M I N A R I E S  

Given F c  ~2 let 5or denote the set of unoriented pairs of nearest 
neighbor sites of 2 2 such that at least one member of the pair is in F. The 
elements of 5or are called bonds. Two distinct bonds are said to be adjacent 
if they share a site. A chain of bonds in 5or is a sequence (b~ ..... bn I biE 5or) 
such that bi and bi+ ~ are adjacent for i =  1,..., n - 1. If bn and b~ are also 
adjacent, we have a circuit of bonds. (One may add the word "self- 
avoiding" to the above definitions if no sites in the above chains occur 
more than twice.) Two sites x, y e F are said to be connected by a chain of 
bonds if they both belong to a bond of the chain. 

The random cluster probability measure is described by assigning to 
each element in 5or a variable 0 (the bond is vacant) or 1 (the bond is 
occupied) in such a way that the probability of a configuration 
co ~ {0, 1 }l~rl is proportional to 

p ~ ) ( 1 -  p)~(~) q ~ )  (7) 

Here, p is a number in (0, 1), while q~(0,  oe); {(~o) is the number of 
occupied bonds in 5~ v(~o) the number of vacant bonds, and c(o)) the 
number of distinct clusters in F induced by ~o. In fact, we will have to con- 
sider two different ways of counting c(co), according to different boundary 
conditions: 
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(i) Free boundary conditions: Two sites are said to belong to the 
same cluster if and only if they are connected by an occupied chain of 
bonds. In this case we will write ci(c~ ) for the number of clusters, and 
denote by Pr, f,p~q(" ) the random cluster probability measure. 

(ii) Wired boundary conditions: Two sites are said to belong to the 
same cluster either if they are connected according to the above definition 
or if they are both connected to a site in Z2 \F  by chains of occupied bonds. 
In this case we will write ew(~o) for the number of clusters and denote by 
PF, w,p,q(" ) the random cluster probability measure. 

Remark. The integer values for q in these random cluster measures 
provide representations of the q-state Potts models. Here, our interest 
focuses on the case q = 2, which corresponds to the Ising model. We will 
henceforth take q = 2, and omit q from all subsequent expressions. 

The basic relations that we will need between the Gibbs and the 
random cluster measures are the following: Set p = 1 - e-~. Then: 

P1. ~x)r ,+ ,~=Pr ,  w,p{X belongs to the cluster of the boundary 
of r}. 

P2. (a. ,  try)r,,,~ = Pr, b,p {x & y belong to the same cluster }, where a 
is + a n d b i s  w, o r a i s 0 a n d b i s f  

P3. F o r ~ c F ,  a a n d b a s i n P 2  

#r,,,~{all the spins in N are identical } 

>~ Pr, b,p{all sites in N belong to the same cluster } 

P4. F o r ~ c I ;  

#r, +,~{all the spins in ~ are plus } 

>~ Pr,~, e{all sites in N belong to the cluster of the boundary of F} 

P5. The measures Pr, w,p(') and Prj, p(') satisfy the F K G  inequalities 
with respect to the usual partial order on the bond con- 
figurations. 

P6. Unique infinite-volume limits exist for the Pr, w,p(" ) and Pr, f,p(" ). 
Furthermore, all of the above statements, modified where 
necessary, hold in the infinite-volume limit. 

Explicit proofs of P1-P6, and/or sufficient background material for the 
reader to provide proofs, can be found in Ref. 1. 

Next, we discuss some basic facts about duality for the two-dimen- 
sional random cluster models. (For more on this, see Ref. 12, Section II,) 
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As usual, the dual lattice consists of the pairs of nearest neighbors in 
~ ' 2 = ( 7 / + 1 / 2 ) 2 .  For each bond { x , y }  in 50r, there is a unique 
corresponding dual bond {z, t} defined by the property that the two bonds 
intersect at their midpoints. Let 5 ~ denote the set of bonds dual to the 
bonds of 50r-Given an coE {0, 1} i~~ we may define an co*~ {0, 1} Is~ by 
saying that a dual bond is vacant if and only if the corresponding direct 
bond is occupied. Obviously, in this way, the random cluster measures on 
{0, 1 }l~i  induce (dual) measures on {0, 1 }i~e~*i. What is not so obvious is 
that these dual measures are themselves random cluster measures. Let us 
pause to sketch a proof of this fact. 

Below, K will represent a "constant," but its value will change from 
expression to expression. (Typically, it will be equal to IF], 150r], etc.) We 
will use N to represent a normalization "constant," the value of which will 
also change. 

Let ls(co ) and l,,(co) be the number of independent loops of occupied 
bonds in a configuration co t{0 ,  1} i~i  with free or wired boundary 
conditions, respectively. The following facts can be proved by induction (or 
taken as a definition): 

~r(co) -= K -  ~(co) + !r(co) (8a) 

c~(co) = K -  g(co) + l~(co) (8b) 

Since ~(co)+v(co) is a constant, the factor of (1 -p )~(o )  in (7) can be 
replaced by (1-p)-X(~ by readjustment of the normalizing constant. 
Therefore 

P r.f.p( co ) = N 

= N  

= N  

where b = p / (2  - p).  Analogously, 

[1__~1  e(~ 2 x e(~)+ts(~) 

.~(~o) 
20(o~) 

(9) 

2 zw(~) (10) 

:g Let If*(co) and lw(co) be the number of independent loops of occupied 
dual bonds in the configuration co* with free or wired boundary conditions, 
respectively. (To simplify what is to follow, let us assume that the set F is 
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chainwise connected.) Then the following relations are well known or can 
easily be proved: 

~.,(co) = iT(co) + 1 ( l l a )  

el(co) = l*(co) + 1 ( l lb)  

Furthermore, if d*(m) is the number of occupied (dual) bonds of co*, then 
clearly 

d*(co) = K -  d(co) (12) 

Therefore 

and 

[_1 - p J  

= N [1__~]  x*(~ 2~*(~) (13a) 

Pc,./;p(co) = N 2 z" ) (13b) 

Comparison of (9) and (10) with (13a) and (13b) shows that if co 
is distributed according to Pr, w,p (resp. Pcj, p), then co* is distributed 
according to Pr, f,p* (resp. Pr, w,p*), where p * =  1-/5. Observe that the 
boundary conditions are interchanged and the corresponding inverse 
temperature fl* satisfies the Kramers-Wannier relation 

e -n* =th(1/2fl) (14) 

An important fact that we will need later is that if fl>tic, then 
fl*<fl,.. (The self-dual point is, of course, tic.) Now consider the 
correlation function (aoa,)8.,  where the expected value corresponds to the 
(unique) infinite-volume state at inverse temperature fl*. From the usual 
subadditivity arguments (which here invoke the GKS inequality), it follows 
that the decay rate 

7n(fl*)= - l i m  l l o g ( a o a , ) ~ .  (15) 
r t ~  o o  n 

is well-defined. It is known from Onsager's exact solution (8) (as remarked 
in Section II of Ref. 5) that for any fl*< tic, (aoan)~* decays exponentially 
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in n, or, in other words, 7r/is  positive. By P2 and the duality relations 
described above, this also tells us that when fl > tic, the dual bonds in the 
random cluster problem have connectivities that decay exponentially fast. 
This is the central ingredient in all of our proofs. 

3. PROOFS OF THE T H E O R E M S  

Our strategy, roughly speaking, will be to transform our problems in 
the spin systems to problems that may be addressed in the FK represen- 
tation. Then, using the connection between the corresponding dual models, 
the desired estimates are obtained from knowledge of the high-temperature 
properties of the Ising model. 

Before proceeding further, we must attend to the detail of extending 
(15) to points that are not along a lattice axis. 

Lemma 1. For all f l<tic ,  

(axay)t~ ~< exp[ -~n( f l )  d(x, y)]  

where d(x, y) = max{[xl - Yll, [x2-  Yz] }- 

Proof. A number of results of this sort have appeared in the 
literature at various times. (See, e.g., Ref. 7, Proposition 1.) The only- 
necessary observation is that if (z (")) = (zl ("), z2 (")) is a sequence of lattice 
points with zz(n)/z1 (n) ~ tan 0 fixed, then 

7n(fl, 0)=  - lim [log(a0a,(,i)~[ . ~  o~ ]Zl(n)[ (16) 

exists and satisfies 

(i) (aoffz(,l>/~<.exp[--Z~n)yn(fl, 0)]. 

(ii) 40(0) is a convex, symmetric function of tan 0. 

We may halt these considerations at 0 = 45 ~ | 

In what follows, we could work directly with the various limiting 
infinite-volume measures. However, some of the details are conceptually 
simpler if we work in finite-volume systems. Thus, we will typically 
consider large squares Ak and obtain estimates uniform in k once k is large 
enough. To simplify future notation, we will use the index k instead of A k 
to identify measures, expectations, etc.; *k will denote the sites of 7/2* that 
are dual to those in A t. 

Proo f  o f  Theorem I. We claim that the intersection of two events in 
the wired random cluster system (both of which are very likely) is represen- 
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tative of a subclass of the spin configurations in which To.* does not occur. 
The first event, which will be called N., is the occurrence, in the annulus 
f2. = A. \A{. /21,  of a circuit of occupied bonds. The second event, denoted 
by Jg., is the event that at least one site in A {./2j belongs to the boundary 
cluster of the system. 

Now, a circuit of+spins in f2. will prevent T&* from occurring. 
However, although the event N. produces a circuit of spins of the same 
type, it is not necessarily the case that these will be of the plus type. The 
simultaneous occurrence of d//. provides this guarantee. Thus we have, 
using P3 and P4, 

#k,+,a(To.*) <~ 1 - Pk.w.p(Jg..~ n ~ , )  

<. Pk, w,p(dd~) + Pk,~,p(~.) (17) 

Let us exploit the duality to show that the rhs of (17) is very small. In 
order for ~ .  to fail, there must be an occupied chain of dual bonds that 
connects the two (disconnected) pieces (3s and (0s of ~ * .  Then, 
by the duality relations and P2, 

Pk, w,p("~c) ~ E P*k,f,p* (x and y belong to the same dual cluster) 
x E (#t2)~ 
y ~ (OQ)2 

(18) 
x ~ ( a Q h  
y e ( 0 ~ ) 2  

Similarly, in order for ~g. not to occur, there must be an occupied 
dual circuit that separates A {./21 from 8A.. This would imply the existence 
of an occupied dual chain connecting the sets 

$1 = {x~ (7/+ 1/2) 2 Ix1 = 1/2, x2 > 1/2n} 
(19) 

$2 = {x~ ( g +  1/2) 2 fx~ = 1/2, X 2 < --1/2n} 

As in the derivation of Eq. (18), we obtain 

E (20) 
x ~ S l  
yE $2 

From the GKS inequality (or the FKG inequality in the FK represen- 
tation), the finite-volume free boundary correlation functions are bounded 
above by their infinite-volume analogs. Thus 

(~ry).k,o,~. ~< (a~ry)~.  ~< exp[--Tn d(x, y)] (21) 

822/'49/'3-4-3 
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From this it follows that #k,+,~(T0~*) decays with n as desired. 
Furthermore, we have shown that Yi(fl)>~ 1/27n(fl*). | 

Proof of  Thoorem 2. We adapt the proof of Theorem 4 in Ref. 10. 
The basic argument is that, close to the boundary of A~, with over- 
whelming probability, there is either a circuit of+spins  or a circuit 
o f - sp ins .  Therefore, inside this circuit, the state is roughly # +,r o r / l _ ~ - -  
indeed, the restrictions of the free boundary measures to events that take 
place inside the rings F K G  dominate the corresponding infinite-volume 
Gibbs measures. From these facts and the large-deviation results for #+,~ 
and # ,~ (Theorem 1 in Ref. 10; Corollary 1 in the present paper), the 
proof follows easily. 

For 0 <6  < 1 fixed, let g?~ denote the annulus A~\A~(I_a), and define 
the event 

~W~ = {co I ~a + or a -  circuit in f2~ that surrounds A,(~ a)} (22) 

From the proof of Theorem 4 in Ref. 10 it is sufficient to show that there 
are nontrivial constants A and c such that 

#~,o,t~((~W~) C) ~< Ae '~ (23) 

Let us shift attention to the FK representation. Consider the event ~ a  
that in the annulus f2~ there is an occupied circuit of bonds surrounding 
A~(l_a). By P3, 

U . , o , i ( ~ )  ~) ~< ~ , ,  P.,f,p((JV,,) ) (24) 

However, if Y~  does not occur, there must be an occupied chain of 
dual bonds connecting the two disconnected pieces (R I= O A*  and 
R2 = a* . ~?f2, \0A,  ) of the boundary of 0(2~*. By duality and P1, 

Pn,f.p((W6.) c) ~ ~ P*n.w,p* {x belongs to the cluster of the boundary of A*} 
x ~ R 2  

~< ~ (ax) . , ,+,~.  (25) 
x ~ R  2 

Following Ref. 2, we will use the Simon-Lieb inequality ~11'6) to finish 
the proof. The (fixed) plus spins that form the boundary condition of 
#*n,+,~* can be regarded as a single (giant) fixed spin a B also set to 
plus--albeit in a somewhat contorted lattice. Let us now consider the 
system where a ~ is allowed dynamic degrees of freedom, but otherwise has 
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no boundary condition. We will denote thermal expectations in this 
measure by ( - - ) .~ ,  z,~*. It is not terribly difficult to see that 

<a:,>..,+.p. = <oxaa>..,a,/~. (26) 

Using (26) and the Simon Lieb inequality, we have 

<ox>*~,+,~*~ < Y~ <~x~y>*n,o,~* <~y~B>*n,~,~* 
y ~ 3 A *  n 

Y~ <o~y>*~,o,~* 
y ~ 3 A *  

<<. ~ <axay>#. (27) 
y c 0A~ 

where the last step is from the aforementioned dominance. Combining 
Eq. (27) with the exponential decay implied by Lemma 1 and the fact that 
/~*</3c, one obtains the desired result. | 

As a consequence of the above theorems and the techniques used to 
prove them--we have the following additional, intuitive result: 

Proof of Theorem3. Let /~>/~c and consider the event ~ - *  that 
there is a ( -* )  ring surrounding the box An. We have 

<ao >~,+,/s - m(fl) = # +,~(~.*)  [ <ao >.,+,~ - <ao] ~ - *  > +,~3 

+ [1 - ~+,~(~.*)][<ao>~,+,~-  <~01 (~ ,7" ;>  +,A 

(28) 

Notice that, by the FKG inequality, the second term is positive. Indeed, 
the absence of a ( -* )  ring surrounding A~ is not as positive an incentive as 
plus boundary conditions on A~. Thus, 

<ao>~,+,~-m(fl)>~#+,p(:~*)[<ao>~,+,/s- < a o [ : ~ *  > +,~] (29) 

Clearly, all remaining terms are positive. In particular, the condition ~ * 
interdicts the + state inside An and we have 

so that 

< - Oo I ~ f  * > +,s/> m(#) (30) 

We claim that, in fact, # + , ~ ( ~  *)~  e x p ( -  8n7i), where it is noted that 
8n is the perimeter of the box. (An upper bound of this form can also be 
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Fig. 1. Construction of the event ~n. 

obtained.) To this end, consider the event Tk,~ ~ To~* in which there is a 
( - * )  chain from the origin to (0, k) that does not pass to the right of the 
line x l = 2 k .  By the reasoning of Lemma 1, it is seen that 

- - ,  - - ,  
/t +,~(Tk, c )//~ +,~(Tok ) tends to unity exponentially rapidly. 

We now surround the region An with a mesh of strips of scale k. (See 
Fig. 1.) Estimating from below the probability of on the order of 8n/k 
events that are translates and rotations of T * k,•, we obtain 

#+,/~(~-*) >~ e x p [ - 7 i ( / / )  8n(1 + e ) ]  (32) 

for any ~, provided n and k are large enough. This, together with (31), 
provides the desired lower bound. 

The upper bounds are obtained in a similar fashion. Indeed, consider 
the event T * that the origin is ( - * )  connected to the boundary of A n. A OAn' 
derivation similar to that above shows 

( a o )  n, + ,~ - m(/3) ~< 2# +.~(TaA*) (33) 

Using subadditivity and the exponential decay of To~*, we obtain the 
desired result. | 

Remark. It is worth noting that all of the 7's in this work may be 
identified--in the scaling sense--with multiples of the inverse of the 
correlation length. 
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